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SUMMARY & CONCLUSIONS 

 
The complexity of a spare parts prioritization model 

should be consonant with the amount and quality of data 
available to populate it. When production processes are new 
and the reliability database is sparse and represents primarily 
expert knowledge, an approximate reasoning (AR) based 
model is appropriate. AR models are designed to emulate the 
inferential processes used by experts in making judgments. 
We have designed and tested such a model for the planned 
component production process for nuclear weapons at Los 
Alamos National Laboratory.  
 The model successfully represents the experts’ knowledge 
concerning the frequency and consequences of a part failure. 
The use of linguistic variables provides an adaptable format 
for eliciting this knowledge and a consistent basis for valuing 
the effect on production of different parts. Ranking the parts 
for inclusion in a spare parts inventory is a straightforward 
transformation of the AR output. The basis for this ranking is 
directly traceable to the elicitation results. AR-based models 
are well-suited to prioritization problems with these 
characteristics. 

 
1.  INTRODUCTION 

 
 The industrial practice of maintaining an inventory of 
spare parts for equipment to minimize lost production time is 
commonplace. Conceptually, the management of such an 
inventory is also straightforward: one wishes to maximize 
production while minimizing the costs associated with the 
spare parts inventory. In practice, such models can be quite 
complex, depending on the production process, the nature of 
the equipment and associated failures, and the consequences 
of lost production. For example, one might expect to find a 
model based on a discrete object simulation for the process, 
individual reliability models for equipment, and sophisticated 
representations of recovery timing and part acquisition 
times—all of which have been benchmarked using historical 
data for the production system. In this paper, we consider a 
complex system for which the critical data needed to build a 
conventional prioritization model are lacking.  
 The process studied here is the planned production at Los 
Alamos of components for United States nuclear weapons. 
The essential features associated with the design of a spare 
parts program for this process can be summarized as follows. 

- The production line is new and under development. 

- Some of the equipment is old and not directly 
replaceable. 

- Quantitative reliability data are sparse. 
- The times to diagnose the failure, schedule the repair, 

obtain the needed parts, and effect the repair are 
known, at best, in a very uncertain and approximate 
way. 

Under these circumstances, it is difficult to populate a detailed 
parts prioritization model. We examine whether an AR-based 
model with data requirements that are commensurate with the 
sparse and uncertain qualitative data available provides the 
basis for a logically consistent parts prioritization program*. 
 Our approach to decision analysis problems with such 
characteristics is based on the theory of AR (Refs. 2 and 3). 
AR models are designed to emulate the inference process used 
by an expert in making a decision. Our work at Los Alamos 
has been directed at extensions of AR to handle complex 
systems for which the underlying physical phenomena are 
incompletely understood. Knowledge of such systems 
normally exists with a group of experts—no single expert has 
a complete understanding of the system. We use deductive 
logic models called process trees to represent this group 
knowledge (Refs. 4 and 5). Process trees are capable of 
representing many possible realizations of a physical process 
in a single logical equation. We use “possible” here in the 
context of possibility theory (Ref. 6). Possibility theory 
provides a direct link between process trees and AR decision 
models and facilitates hybrid representations of uncertainty 
that make it possible to consistently represent an expert’s 
confidence in his knowledge. Decision-making is a process 
too and therefore is amenable to representation with a process 
tree. We refer to this combination of process trees to represent 
physical and decision processes, AR decision models, and the 
use of hybrid uncertainty measures as logic-evolved decision 
models (LED) (Ref. 7). 
 In this paper, we show how AR and the extensions to it 
incorporated in LED can be applied to spare parts 
prioritization. We present a decision process tree for this 
problem and show how it can be realized in an AR model. The 
elements and functioning of the AR model are discussed, and 
a hybrid representation of uncertainty—fundamental to the 
decision process—is examined. The inputs and uncertainty 
measures are primarily expert knowledge, and the techniques 
                                                           
*In a previous paper, we considered the problem of making reliability 
assessments for weapons when the available data are comparably sparse (Ref. 
1).  
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used to elicit this information are described. We present 
representative results obtained using the AR model and 
discuss the observed model performance to date. 
 

2.  DECISION PROCESS TREE 
 
 The starting point for the prioritization model is the 
construction of a decision process tree. The tree is a logical 
representation of the fundamental decision process. A 
simplified and condensed version of the process tree used for 
this problem is shown in Figure 1. The tree is constructed 
deductively. That is, one begins with a general description of 
the issue for which a decision model is required, here 
“Prioritization Strategy” (Node A in the figure) and then 
develops in turn the various items that logically constitute 
such a strategy. 
 The deductive aspect of the tree development is quickly 
apparent. The overall process is decomposed as a strategy for 
evaluating each component, and an aggregation operation to 
make judgments among the complete set of components. The 
aggregation operation will employ a cost strategy and a set of 
aggregation constraints. It was decided early in the project that 
the aggregation portion of the analysis would be deferred. 
Instead, the initial prioritization would be a simple rank 
ordering of the components based on a single metric, the 
output of the AR model. 
 The natural context in which to evaluate individual 
components is in terms of risk. For this problem, the possible 
description of “Consequence of a Fault Event” (Node B in 
Fig. 1) could be quite detailed, taking into account factors 
such as the magnitude of the shortfall and the sensitivity of the 
overall process to it. However, it was clear that the 
information needed to make such distinctions useful did not 
yet exist. This meant that the primary emphasis would be on 
the likelihood of production shortfalls and that the effect 
would have to be treated in a simple, approximate manner. 
Logically, ”Shortfall Likelihood” (Node C) is determined by 
the “Production Disruption Rate” and the “Restoration Time 
Distribution.” That is, how often do components fail, how 
badly do they disrupt production, and how long does it take to 
recover? Each  
 
 

 
Figure 1.  Process Tree for Prioritization Strategy. 

of these is developed in the tree in turn.  For example, 
“Restoration Time Distribution” is composed of “Warning 
Time,” “Diagnosis Time,” “Set Up Time,” “Repair Time,” 
and “Restoration Time.” In the actual tree, each of these is 
developed in additional detail.  
 
 

3.  INFERENTIAL MODEL 
 

The process tree provides the basis for the construction of 
the inferential model that is used to make judgments about the 
components to be prioritized. There are two basic aspects of 
the construction process: developing the inferential structure 
and defining the elements associated with the structure that 
make it possible to arrive at a conclusion. 

The top-level structure of the inferential model used for 
parts prioritization is shown in Fig. 2. It corresponds to the 
logical structure deduced in the process tree. There is a 
module that deals with the timing and duration of important 
activities and a module that is concerned with conditional 
production reduction likelihood. Also shown are two simple 
nodes (A and B in Fig. 2).  Node A represents the operation of 
inferring the production loss likelihood, LP, from the fault 
frequency, f, and the conditional likelihood of production loss, 
LC, and Node B chains this result with the time delay 
attributable to procurement, ∆tP, to infer production impact†. 
Production impact is related to “Risk for Each Component” in 
the process tree.  
 
3.1 Operation of an AR Model 
 The reader may be unfamiliar with the operation of an AR 
model. In this section, we briefly describe the operators 
employed in AR. There are three basic operations to be 
carried out to perform the sequence of evaluations shown in 
Fig. 2: (1) conversion of the input information on the parts of 
interest into the proper form, (2) solution of the forward-
chaining inferential chain, and (3) translation of the output 
into metrics to bin and order the parts for inclusion in the 
inventory. These steps correspond to the circled numbers in 
Fig. 3.  
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Figure 2.  Top Level of the Inferential Structure for 
Prioritization. 

                                                           
† This chaining of inferences is characteristic of AR models. 
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Figure 3.  Overview of Operation of an AR Model. 
 
 Step 1: Conversion of the input. The data to be considered 
can be either quantitative (Circle 1a in Fig. 3) or qualitative 
(Circle 1b); both will be converted into the same internal 
form. The data inputs for the timing module for example are 
quantitative. We will see shortly how these inputs are first 
operated on algebraically to obtain a time delay associated 
with procurement. A quantitative input is represented by the 
symbol X in Fig. 3. AR models treat variables as linguistics—
natural language expressions. 
 We denote the corresponding linguistic variable for X as 
Lin(X). We chose to represent the time delay with the 
following descriptors: negligible, small, medium, large. These 
descriptors are referred to as the universe of discourse, U = 
{Negligible, Small, Medium, Large}. The elements in a 
universe of discourse are treated as fuzzy sets (Refs. 8 and 9). 
A linguistic variable has associated with it a degree of 
membership vector, D, that defines to what extent it belongs 
to each set. For example, if ∆tP = 1000 days, then it is surely 
large, and D(∆tP) = [0, 0, 0, 1], denoting that in this case ∆tP 
has only membership in {Large}. The assignment to D given 
an X is done using fuzzy set membership functions. The 
membership functions for ∆tP are shown in Fig. 4. For 
example, a delay time of 5 days corresponds to D(∆tP) = 
[0,.5,.5,0]. The D-vector is the internal representation of the 
linguistic variable “Procurement Time Delay.” 
 Some of the inputs may be better expressed qualitatively 
to begin with; they already are in linguistic variable form. The 
input to the conditional likelihood module in Fig. 2 is “Effect 
on Production,” E. It represents the result of a failure—the 
effect, given the failure. We use a universe of discourse for E 
of U(E) = {None, Reduced, Delayed, Immediate}, where 
“immediate” is understood to mean instantaneous and 
complete. The assignment of D(E) is done by interpreting the  
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Figure 4.  Membership Functions for Delay Time, ∆tP. 
 
expert elicitation. For example, if the expert judges that the 
part failure could result in either immediate or a delayed 
effect, with immediate more likely, then this would be 
encoded as D(E) = [0, 0, .25, .75]. This can be interpreted as a 
“degree of belief.” We will consider the possible 
interpretations of D-vectors and their relationship to 
uncertainty in more detail below. 
 Step 2: Solution of the inference chain. The fundamental 
logical operation in AR is implication, which is performed at 
each inference node in the model. A node has multiple 
inputs—the antecedents, A—and a single output—the 
consequent, C—all with their corresponding universes of 
discourse. For simplicity, consider the case where there are 
two elements in A, {α, β}. The inference drawn is of the 
form: “α is αI and β is βj, AND IF αI and βj THEN Ck, 
THEREFORE Ck”, where i, j, and k refer to particular elements 
in the respective universes of discourse. This statement is a 
tautology, hence the justification for the use of the word 
“THEREFORE.” The assignment of k given i and j is done with a 
rule base. This rule base describes how a combination of 
antecedent fuzzy sets implies a particular set in U(C). To 
make this concrete, consider Node A in Fig. 2. The universes 
of discourse for the antecedents are U(LC) = {Very Unlikely, 
Unlikely, Likely, Nearly Certain} and U(f) = {Rare, Seldom, 
Anticipated, Routine}. The consequent is “Production Loss 
Likelihood”, LP with U(LP) = U(LC). The reader will 
recognize that this inference looks like the product of a 
conditional probability and a frequency. The rule base for this 
node is given in Table 1. The shaded entry is the rule: If f is 
Seldom and LC is Likely then LP is Unlikely.  
 Recall that both antecedents are represented internally as 
D-vectors, and in general, these vectors will have more than 
one non-zero entry. This means that multiple rules, and 
therefore assignments of LP, are occurring simultaneously. A 
consistent resolution of this situation is obtained using the 
max-min rule (Ref. 8).  This can be expressed as 
 
 µℜ = Max

∀ n, m( )→ℜ
Min κ n ,σ m( )( )  . (1) 
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Table 1.  Rule Base for Likelihood of Production Loss, LP 
 

Conditional Production Loss Likelihood, LC 
 Very Unlikely Unlikely Likely Nearly Certain 

Rare Very Unlikely Very Unlikely Very Unlikely Very Unlikely 
Seldom Very Unlikely Very Unlikely Unlikely Unlikely 

Anticipated Very Unlikely Unlikely Likely Likely 
Fa

ul
t 

Fr
eq

ue
nc

y,
 f 

Routine Very Unlikely Unlikely Likely Nearly Certain 
 
In this formula, κn and σm are elements n and m of fuzzy input 
membership vectors κ and σ, and ℜ is a particular element 
output by the rule. For example, assume that D(f) = [0, 0, .25, 
.75]—the failure frequency has no membership in the sets 
“Rare” or “Seldom” and non-zero membership in 
“Anticipated” and “Routine”‡ and D(LC) = [0,  .3, .9, 0], 
corresponding to non-zero membership in “Unlikely” and 
“Likely.” Applying the max-min operator to these D-vectors 
yields D(LP) = [0, .3, .75, 0]. A natural language interpretation 
of this vector is that LP is between unlikely and likely and 
closer to being likely. 
 Step 3: Translation of the output into metrics. The result 
of a set of forward-chained inferences is a single consequent 
and one D-vector. In our model, this is “Production Impact”, I 
with U(I)={Negligible, Small, Medium, Large}. To use I as 
our metric for ranking parts for inclusion in a spare parts 
inventory, it must be converted to a single numerical value 
that reflects the meaning of the D-vector. This process is 
called defuzzification. We have discussed defuzzification in 
the context of an AR decision model at length in a previous 
paper (Ref. 10) and restrict ourselves here to a short summary.  
 The first step in defuzzification is to define membership 
functions, MI(I), i = 1, n, similar to those in Fig. 4, for the 
fuzzy sets in U(I), These membership functions should be 
chosen so that there is an approximate relationship between 
the intervals on which they are defined and the linguistics. We 
then find the fuzzy union of the sets defined by  
  
 U

i
ii n,1i,MDC ==  (2) 

 
Fuzzy union is a max operation and the result is the outer 
envelope of the membership functions weighted by the 
numerical values in D(I). If we view this union as a possibility 
distribution, then it is natural by the analogy with probability 
to compute an expected value, λ as  
 
   λ(I) = x C(x) dx∫ / C(x) dx∫   . (3) 
 
This is referred to as centroid defuzzification and provides a 
numerical value for ranking purposes. The membership 
functions can be adjusted so that the centroid values 
approximately reflect the set linguistics scale. It is also 
possible to convert the centroid into a non-fuzzy linguistic by 
selecting the set for which the centroid has the maximum 
degree of membership denoted as Lin(λ). We then use  λ(Ι) to 
order and Lin(λ(Ι)) to bin the I vectors for each spare part. 
                                                           
‡There is no requirement that the set memberships sum to 1.0 

Note that because several time durations are represented in the 
model as random variables, it follows that λ(Ι) and Lin(λ(Ι)) 
are random variables as well. We will discuss this aspect of 
the model further in Sec. 5. With these preliminaries, we are 
now ready to take a closer look at the details of the model of 
Fig. 2. 
 
3.2 Attributable Delay Time Module 
 The outputs of the timing module are measures of the 
delays attributable to procurement and non-procurement 
sources. The relationship of the timing factors is shown in 
Fig. 5. The initial datum is the detection time. If failure is not 
immediate, then there is a warning period, at the end of which 
failure occurs. We present results showing the effect of 
warning time. It is assumed that procurement will not begin 
until diagnosis of the problem is complete. In contrast, we 
assume that setup will begin immediately upon detection. This 
is conservative relative to the effect of a part’s failure. It also 
reflects the reality that preparations for repairs in a nuclear 
facility can be very complex and time-consuming and that the 
process owners are well aware of this fact. The situation 
shown in Fig. 5 corresponds to the case where procurement is 
the critical path item, ∆tP > 0; setup is completed before the 
new part is available. Thus, the repair process is held up 
waiting for the part. Note that if a spare were available, then 
the procurement phase would be complete at the conclusion of 
the diagnosis period. The durations are treated as uniformly 
distributed random variables. The endpoints of these  
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Figure 5. Timing Relations Associated with Production 
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distributions correspond to lower and upper bound estimates 
obtained from the subject matter experts (SMEs).§  
 
3.3 Conditional Production Loss Likelihood Module 
 This part of the AR model was revised several times 
because of difficulties encountered in eliciting the required 
information. The following approach was found to be a 
reasonable compromise between the desire for a detailed, 
elegant model and the realities of interacting with SMEs who 
are unfamiliar with the concepts of AR and probability and are 
extremely busy trying to bring production on line.** We were 
concerned with eliciting LC directly from the experts because 
it would be difficult to document their reasoning and it was 
clear that delayed or partial losses would be poorly 
represented. We chose instead to elicit information on the 
effect of the production change (E) resulting from a 
component failure. We used multiple rule bases similar to 
Table I to evaluate the relative importance of delayed or 
reduced production. The D-vector from this chain is combined 
with the “none” and “immediate” effects in a four antecedent 
rule base to obtain LC. D(LC) is the output from this module 
and is the antecedent for Node A of Fig. 2 as discussed above. 
 
3.4 Determination of Effective Production Impact 
 At this point, both of the antecedents to Node A in Fig. 2 
have been calculated. The consequent here is the effective 
production impact associated with failure of the part, I. The 
inference is performed using the rule base in Table II and the 
max-min operator. Reference to Table 2 shows that I is of the 
functional form I(magnitude of consequence, frequency). 
Therefore, the linguistics used to represent production impact 
apply equally well to risk and provide the link back to the 
decision process tree. 

 
4.  FUZZY SETS AND UNCERTAINTY IN AR†† 

 
 We have made several references above to “degree of 
belief” in reference to D-vectors. To interpret a D-vector 
properly, it is necessary to discuss briefly the relationship 
between fuzzy sets, possibility, and sources of uncertainty. 
Fuzzy sets are most often used to represent ambiguity. 
Ambiguity arises when it is not possible to assign an object to 
a single set. For example, is a room “Cold,” “Comfortable,” 
“Hot,” or somewhere in between? Memberships in fuzzy sets 
vary smoothly, so we can easily represent situations where the 
temperature is perceived to be “in between”. Another useful 
perspective exists. One can interpret a degree of membership 
as a measure of the possibility that an object belongs to a set.  
That is, the assignment of set memberships induces a 
possibility distribution. When linguistic variables are used to 
represent concepts such as “conditional probability” or  

                                                           
§We have found the use of a uniform distribution to represent an expert’s 
estimate for the range of a numerical quantity such as time duration to be 
generally consistent with how experts estimate such quantities. 
 
**Most of the SMEs are technicians who are very familiar with part of the 
process and the associated equipment. 
†† For a more detailed discussions of these issues see References 6 and 
Fuzziness and Probability by S. Thomas (Ref.11) 

“likelihood,” it is this latter interpretation that is operative. 
That is, the set memberships are a measure of outcome 
uncertainty. Possibility is an imprecise outcome uncertainty 
measure. A precise measure is probability.‡‡ The choice of 
which measure to use will depend on the available data. When 
sufficient data exist to construct an acceptable probabilistic 
model or where the expert description of outcome uncertainty 
is best represented as a probability distribution, then it is 
preferable. For most cases involving large amounts of 
epistemic (state of knowledge) uncertainty, we have found 
possibility measures to be more compatible with expert 
knowledge and judgment. Both possibility and probability are 
used in the prioritization model. AR models are able to 
aggregate the various aspects of uncertainty using rule bases. 
We refer to such aggregations as hybrid uncertainty. 
 

5. ELICITATION PROCESS 
 

 The spare part prioritization project is a small part of the 
much larger effort to manufacture weapon components. This 
meant that a complete flow sheet on the planned process was 
available and that SMEs for each aspect of the process had 
already been identified.  The value of an AR model is strongly 
dependent on the design of the elicitation program (Ref. 12). 
We developed a standard elicitation form in co-operation with 
several SMEs who were willing to participate in a pilot 
program. Following testing of the finalized elicitation 
program, the major elicitation began. 
 The elicitation began by asking each previously identified 
SME what manufacturing responsibilities he/she had. These 
were tied to the process flow sheet. For each identified 
subprocess, the expert was asked to generate an equipment 
list. The failure modes were identified for each item of 
equipment. For each failure mode, the expert explained 
whether the equipment was replaced or repaired. If repair was 
the preferred option, then the parts needed were identified. 
These parts are candidates for inclusion in the spare parts 
inventory and are the objects to be rank-ordered. The SMEs 
were given copies of the elicitation package before the 
elicitation session. The package includes a complete glossary 
describing each of the variables and explanations of the set 
descriptors used to represent them. 

 
6.  PRIORITIZATION RESULTS 

 
To date we have analyzed the data from 5 SMEs covering 

approximately 40 parts.  Figure 6 shows the median 
production impact centroids for these parts for the base case 
(without warning) and with warning. A number of 
observations can be made. For about half the parts examined, 
either the SME responded that failure of the part would have 
no effect on production because redundant equipment is 
available or the expected delays are attributable to set up, not 
procurement. Such parts have small values of λ(Ι), 
corresponding to Lin(λ(Ι)) → “Negligible” and do not need to 
be included in a spare parts inventory. For several parts (Part 
Ids 18–20 in Fig. 6), the effect of warning time was  
                                                           
‡‡Probability satisfies the law of the excluded middle. Possibility and fuzzy 
sets do not and are therefore described as imprecise. 
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Table 2.  Rule Base for Production Impact, I 
 

Production Loss Likelihood, LP 
 Very Unlikely Unlikely Likely Nearly Certain 

Negligible Negligible Negligible Negligible Negligible 
Small Negligible Negligible Moderate Moderate 

Medium Negligible Small Large Large A
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Large Very Unlikely Small Large Very Large 

 
 

observable; the warning time duration was comparable to the 
procurement duration. Parts with large λ(I) are ones that stop 
production immediately upon failure, fail fairly frequently and 
have long procurement times that exceed set up requirements. 
Even when warning time is available for these parts, the 
duration is too short to affect the production impact.  These 
are good candidates for the spare parts inventory. 
 As noted earlier, the timing duration data from the experts 
are represented as uniform random variables. In some cases 
the ranges given for the procurement and warning times can 
vary significantly. In such cases it is important to consider the 
probability distribution function for I. Typically we present 
the binned and ranked results at the median and ninetieth 
percentiles. 
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Figure 6.  Median Prioritization Results. 

mailto:tbott@lanl.gov
mailto:tbott@lanl.gov
mailto:tbott@lanl.gov


Prioritizing the Purchase of Spare Parts 
Using an Approximate Reasoning Model

Steve Eisenhawer
Terry Bott

Joe Jackson
Decision Applications Division

Los Alamos National Laboratory
Los Alamos, New Mexico USA

Reliability and Maintenance Symposium
January 2002



2

Objective: Design a spare parts prioritization model 
for a production process

Process Characteristics:
– the production line is new and under 

development
– some of the equipment is old and not directly 

replaceable
– quantitative reliability data is sparse
– the times to diagnose the failure, schedule the 

repair, obtain the needed parts and effect the 
repair are known, at best in a very uncertain 
and approximate way.

These factors make it difficult to populate a 
conventional model
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Approach: Use approximate reasoning to represent 
the data and design an inferential model compatible 
with the problem characteristics.

Decision Process Tree

Inference Model

Priorities
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Decision Process Tree
A

B
C
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Inferential Structure
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Operation of an AR Model
Quantitative 

Data

Fuzzy Set 
Membership 
Functions

Qualitative 
Data
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Step 1: Assignment of Linguistic Variables
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Quantitative Input Qualitative Input
Delay Time: 
[Negligible, Small. Medium, Large}

D(∆T = 5) = [0, .5, .5, 0]

Effect on Production:
{None, Reduced. Delayed, Immediate}

Expert Elicitation

D(Ε) = [0, 0, .25, .75]

“immediate or delayed with 
immediate more likely”
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Procurement 
& Setup Time 
Attributable 

Delays, 
∆t

Conditional 
Production 

Loss 
Likelihood, 

LC

Production 
Loss 

Likelihood, LP

Production 
Impact, I Part 

Priorities

Fault 
Frequency, f

Timing 
Estimates

Production 
Effects A

B Conditional Pro duction Loss Likelihood
Very Unlikel y Unlike ly Likely Nearly Certain

Rare Very Unlike ly Very Unlikely Very Unlikely Very Unlikely
Seldom Very Unlike ly Very Unlikely Unlikely Unlikely

Anticipated Very Unlike ly Unlikely Likely Likely
Routine Very Unlike ly Unlikely Likely Nearly Certain

Fault Frequency 
{Rare, Seldom, Anticipated, Routine}

Conditional Production Loss Likelihood 
{Very Unlikely, Unlikely, Likely, Nearly Certain}

 Production Loss Likelihood 
{Very Unlikely, Unlikely, Likely, Nearly Certain}

[0, 0, .25, .75]

[0, 0, .3, .9]
[0, 0, .3, .75]

Antecedents Consequent

Step 2: Solution of the Inference Chain

  f ∧ LC ⇒ LP
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Step 3: Translation of the Output into Metrics

Production Impact: {Negligible, Small, Moderate. Large, Very Large}

D(Ι) = [0, 0, .2, .75, 0]

Centroid, λ
Linguistic, Lin(λ) = “Large”

Negligible
Small Large

Very Large

Moderate

Fuzzy Union



10

Time Delays and Linguistic Variables
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Inferring Production Impact
Procurement 
& Setup Time 
Attributable 

Delays, 
∆t

Conditional 
Production 

Loss 
Likelihood, 

LC

Production 
Loss 

Likelihood, LP

Production 
Impact, I Part 

Priorities

Fault 
Frequency, f

Timing 
Estimates

Production 
Effects A

B

Procurement Time Delay 
{None, Small, Medium, Large}

 Production Impact 
{Negligible, Small, Moderate, Large, Very Large}

 Production Loss Likelihood 
{Very Unlikely, Unlikely, Likely, Nearly Certain}

[0, .2, .8, 0]

[0, 0, .2, .75, 0][0, 0, .3, .75]

Antecedents Consequent

Pr oduction Loss Likelihood
Very Unlikel y Unlike ly Likely Nearly Certain

Negligible Negligible Negligib le Negligib le Negligib le
Small Negligible Negligib le Moderate Moderate

Me dium Negligible Small Large La rge
Large Very Unlikely Small Large Very La rge

Production impact is 
moderate to large

  ∆TP ∧ LP → I



12

Expert Elicitation – Part Identification
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Expert Elicitation – Failure Characterization

Failure Frequency Linguistics
(Rare: Never expected to  occur during 
project lifetime
Seldom: Surprised if occurs during project 
lifetime 
Anticipated: Occurrence once every couple 
of years 
Routine: Occurs one or more times per year)

Elicited Set Memberships [0,1]
Rare Seldom   Anticipated    Routine
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Conclusions

• AR is a good tool for prioritizing when 
knowledge is approximate and uncertain.

•The process tree logic model helps to create 
comprehensive and reviewable inferential 
models

•An AR ranking process is consistent and 
traceable – ensures that parts are purchased 
based upon a commonly accepted risk 
model.
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